USN

First Semester MCA Degree Examination, June/July 2013

Discrete Mathematics

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Define power set of a set A. IF $A = \{a, \phi\}$ then find the power set, P(A). Also prove that if a set A has n elements then P(A) has 2^n elements. (05 Marks)
 - b. State and prove DeMorgan's laws.

(05 Marks)

- c. Find the number of integers from 1 to 200 that are (i) not divisible by 5, (ii) divisible by 2 or 5 or 9, iii) not divisible by 2 or 5 or 9. (05 Marks)
- d. If the probability of hitting a target by three persons A, B, C are ½, ½,¼ respectively find the probability that the target is hit by at least one person. (05 Marks)
- 2 a. Define: i) tautology, ii) contradiction. Using truth table show that:

$$[p \rightarrow (q \land r)] \Leftrightarrow [(p \rightarrow q) \land (p \rightarrow r)]$$

(07 Marks)

- b. Using the laws of logic (without truth table) prove that:
 - i) $p \vee [p \land (p \lor q)] \Leftrightarrow p$,
- ii) $[p \lor q \lor (\neg p \land \neg q \land r)] \Leftrightarrow (p \lor q \lor r)$

(06 Marks)

c. Test the validity of argument:

(07 Marks)

$$p \rightarrow q$$

$$r \rightarrow s$$

$$p \lor r$$

$$\therefore q \lor s$$

- 3 a. Define open statement. For all integers if p(x) : x > 0; q(x) : x is even; r(x) : x is a perfect square s(x) : x is divisible by 3 then write down the following statements in symbolic form:
 - i) Atleast one integer is even
 - ii) There exists a positive integer that is even.
 - iii) Some even integers are divisible by 3.
 - iv) If x is even and a perfect square then x is not divisible by 3.

(07 Marks)

- b. Write down converse, inverse, contrapositive of, $\forall x, [p(x) \rightarrow q(x)]$.
- (06 Marks)
- c. Give (i) a direct proof, (ii) an indirect proof and (iii) proof by contradiction, to the statement "If n is an even integer then n + 9 is an odd integer". (07 Marks)
- 4 a. Prove by mathematical induction, $n! \ge 2^{n-1}$ for all integers $n \ge 1$.

(06 Marks)

- b. Find the explicit form of a_n if the recursive relation is $a_1 = 4$, $a_n = a_{n-1} + n$ for $n \ge 2$. (07 Marks)
- c. Define Fibonacci sequence by stating its recursive relation. If $F_0 = 0$, $F_1 = 1$, find F_2 , F_3 , F_4 , F_5 , F_6 , F_7 .
- 5 a. How many persons must be chosen in order that atleast five of them will have birth days in the same calendar month? (05 Marks)
 - b. Find the stirling number s(7, 4). If A = {1, 2, 3, 4, 5, 6, 7} and B = {a, b, c, d} how many onto functions from A to B exist.

 (05 Marks)
 - c. If $f: R \to R$, $g: R \to R$ are f(x) = 5x + 6, $g(x) = \frac{x 6}{5}$, prove that f and g are inverse of each other. (05 Marks)

- 5 d. If $A = \{1, 2, 3, 4\}$ with R is a relation on A given by x R y if and only if y = 2x then
 - i) Write R as set of ordered pairs
 - ii) Draw the digraph of R
 - iii) Find the matrix of relation M_R.
 - iv) Determine the in-degree and out-degree of vertices in the digraph of R. (05 Marks)
- 6 a. If A = {1, 2, 3, 4, 6, 12} with relation R defined as aRb iff a divides b. find R as a set of ordered pairs and prove that relation R is partial order on A. Also draw the Hasse diagram of the relation R.

 (07 Marks)
 - b. For the equivalence relation on $A = \{1, 2, 3, 4, 5\}$ given by

 $R = \{(1, 1) (2, 2) (2, 3) (3, 2) (3, 3) (4, 4) (4, 5) (5, 4) (5, 5)\},\$

find the partition of a induced by R and show that it is a partition.

(06 Marks)

c. For $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and partial order (A, R) given by Hasse diagram (Fig.Q6(c)) find all the lower bounds, upper bounds, greatest lower bounds (GLB) and least upper bound [LUB] of the subsets $B_1 = \{1, 2\}$ and $B_2 = \{3, 4, 5\}$. (07 Marks)

Fig.Q6(c)

7 a. If a 9-tupple say c = 011011101 is transmitted with p = 0.05 of incorrect transmission, find probability that (i) single error occurs, (ii) a double error occurs, (iii) a triple error occurs.

b. The generator matrix of an encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$, $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$.

- i) Determine all the code words of Z_2^2 .
- ii) Find the associated parity-check matrix H.
- iii) Decode 11101, 11011 using H.

(07 Marks)

c. Prove that $G = \{1, -1, i, -i\}$ is a cyclic group.

(03 Marks)

- d. If $c = \{00000, 01011, 10110, 11101\}$ is a subgroup of Z_2^5 with $Z_2 = \{0, 1\}$ under the addition modulo 2, using Lgrange's theorem find the number of cosets of C. (03 Marks)
- 8 a. If $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ is the generator matrix for an encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$,
 - i) Find the group code C.
 - ii) With $x_1 = 10000$, $x_2 = 01000$, $x_3 = 00100$, $x_4 = 00010$, $x_5 = 00001$, $x_6 = 10100$, $x_7 = 10001$, find cosets $x_1 + c$ and form the decoding table
 - iii) Using the above decoding table decode the received words 11111, 01111. (12 Marks)
 - b. Define Ring and give one example.

(04 Marks)

c. Under the usual addition and multiplication of matrices show that set of all 2×2 matrices (M_2) is not Integral Domain. (04 Marks)

* * * * *